Skip to content

A Dakota plugin for ropt

The ropt-dakota package extends the ropt module by providing a plugin that integrates optimization algorithms from the Dakota toolkit. ropt itself is a robust optimization framework designed for both continuous and discrete optimization workflows and is extensible through its plugin architecture. Installing ropt-dakota makes these Dakota algorithms directly available within ropt.

Reference

ropt_dakota.dakota.DakotaOptimizer

Bases: Optimizer

Dakota optimization backend for ropt.

This class provides an interface to several optimization algorithms from Dakota, enabling their use within ropt.

To select an optimizer, set the method field within the optimizer section of the EnOptConfig configuration object to the desired algorithm's name. Most methods support the general options defined in the EnOptConfig object. For algorithm-specific options, use the options dictionary within the optimizer section.

The table below lists the included methods together with the method-specific options that are supported. Click on the method name to consult the corresponding Dakota documentation:

Method Method Options
optpp_q_newton search_method, merit_function, steplength_to_boundary, centering_parameter, max_step, gradient_tolerance, max_iterations, convergence_tolerance, max_function_evaluations
conmin_mfd max_iterations, convergence_tolerance, constraint_tolerance, max_function_evaluations
conmin_frcg max_iterations, convergence_tolerance, constraint_tolerance, max_function_evaluations
mesh_adaptive_search initial_delta, variable_tolerance, function_precision, seed, history_file, display_format, variable_neighborhood_search, neighbor_order, display_all_evaluations, use_surrogate, max_iterations, max_function_evaluations
coliny_ea population_size, initialization_type, fitness_type, replacement_type, crossover_rate, crossover_type, mutation_rate, mutation_type, constraint_penalty, solution_target, seed, show_misc_options, misc_options, max_iterations, convergence_tolerance, max_function_evaluations
soga fitness_type, replacement_type, convergence_type, max_iterations, max_function_evaluations, population_size, print_each_pop, initialization_type, crossover_type, crossover_rate, mutation_type, mutation_rate, seed, convergence_tolerance
moga fitness_type, replacement_type, niching_type, convergence_type, postprocessor_type, max_iterations, max_function_evaluations, population_size, print_each_pop, initialization_type, crossover_type, crossover_rate, mutation_type, mutation_rate, seed, convergence_tolerance
asynch_pattern_search initial_delta, contraction_factor, variable_tolerance, solution_target, merit_function, constraint_penalty, smoothing_factor, constraint_tolerance, max_function_evaluations